research groups

summary

The research activities carried out in our lab cover three main areas of interest: the characterization of metalo-β-lactamases(MβLs), which are zinc enzymes involved in the resistance displayed by some pathogenic bacteria to β-lactam antibiotics, the characterization of copper proteins involved in cellular respiration, and the characterization of membrane proteins involved in the induction of mechanisms of resistance to antibiotics in Staphylococcus aureus. In terms of the study of MβLs, we are now dedicated to the design and evaluation of inhibitors of these enzymes based on previous results from the group that support the hypothesis that the different classes of MβLsshare the same catalytic mechanism, despite the structural diversity observed among them. Regarding the study of the cytochrome c oxidases(COX), copper enzymes which carry out the reduction of oxygen in the culminating stage of cellular respiration, we are now focused on the characterization of the biologic mechanisms of transport and insertion of copper ions, and on the regulation of the function of the copper sites found in these proteins through fine-tuning of its electronic and tridimensional structure. In terms of the characterization of the sensor membrane proteins, we are dedicated to the elucidation of the topology of the membrane-embedded regions of MecR1 and BlaR1 in order to understand how the presence of the β-lactam antibiotic is transmitted to the cytoplasmic domain to activate it, and to the elucidation of the mechanisms through which VraS and VanS detect antibiotics. Our group follows an interdisciplinary approach for the study of the above mentioned systems, using a combination of techniques from different fields: molecular biology, biochemistry, classic structural biology (X-Ray diffraction), spectroscopy (nuclear magnetic resonance, UV-Vis and fluorescence spectroscopy, circular dichroism, etc), and modern enzymology (steady-state and stopped-flow kinetics). We also use in vitro directed evolution as a means of predicting the evolution of the target enzymes.
[laboratorio_personal]

RESEARCH LINES

Antibiotic resistance: Evolution, structural diversity and catalytic mechanism of metallo-β-lactamases

β-Lactam antibiotics are the most widely used chemotherapeutic agents for the treatment of bacterial infections. The main mechanism of resistance to these drugs is the synthesis of β-lactamases, enzymes that hydrolyze and inhibit the action of these antibiotics. Metallo-β-lactamases (MβLs) constitute the most recent generation of these enzymes. MβLs have a broad spectrum of action, inactivating all β-lactam antibiotics, including carbapenems (the last resort used in clinical practice).

The dissemination of genes encoding these enzymes in opportunistic and pathogenic organisms is now global. This situation is exacerbated by the structural diversity of the different MβLs, which makes it difficult to design an efficient inhibitor for these enzymes. The NDM-1 enzyme (http://www.bbc.co.uk/news/health-10925411), in particular, is rapidly spreading worldwide, and there are no clinically used inhibitors for these enzymes, posing a threat to global health.

Our goal is to elucidate the structure-function relationship of these enzymes through biochemical, structural, mechanistic, and evolutionary studies, with the ultimate goal of designing a clinically applicable inhibitor. To date, we have succeeded in: (1) proposing a common catalytic mechanism for MβLs by characterizing a reaction intermediate, (2) identifying their functional in vivo species, and (3) exploring their potential evolutionary mechanisms. We are currently using this prior knowledge to design and generate MβL inhibitors, under the hypothesis that, despite their structural diversity, MβLs act using the same catalytic mechanism.

Our group conducts an interdisciplinary study, using techniques from molecular biology, biochemistry, structural biology, and modern enzymology. Mechanistic studies are performed using rapid mixing techniques and various spectroscopies to follow changes in the active site during catalytic turnover on the millisecond timescale, with the goal of identifying reaction intermediates.

We use crystallography and/or Nuclear Magnetic Resonance (NMR) to characterize the binding mode of potential inhibitors to these enzymes. We also use in vitro directed evolution strategies as a means to predict the evolution of these enzymes in hospital environments and to understand how mutations are fixed in the evolutionary process.

Copper in biological systems: Control of reactivity and insertion mechanism of copper electron transfer sites

La respiración celular depende del control fino de una serie de procesos de oxido-reducción, que culminan en la reducción de oxígeno llevada a cabo por las citocromo c oxidasas. El cobre es un metal de transición esencial para la transferencia electrónica en estas enzimas, siendo a la vez tóxico a altas concentraciones. Por lo tanto, su concentración intracelular y mecanismos de transporte y almacenamiento deben estar finamente regulados.

Our group studies: (1) the biological mechanisms of copper ion transport and insertion into terminal oxidases and (2) the regulation of the function of these sites by fine-tuning their electronic and three-dimensional structure. We have identified the proteins involved in copper transport and insertion into the CuA site of bacterial cytochrome oxidases and structurally characterized the metal-binding mechanism using NMR. To study the electronic structure of these sites, classical structural biology methods are insufficient, as they only provide the three-dimensional structure.

In our laboratory, we use several spectroscopic techniques (mainly NMR) to analyze the electron distribution at copper sites and study how it determines long-distance electron transfer. We have used this strategy to describe the fine-tuning of reactivity in blue copper proteins, and we are currently applying our experience to the study of the CuA copper site in cytochrome c oxidases. We have proposed that the high efficiency of the CuA site in long-distance electron transfer is primarily due to the presence of low-energy excited electronic states that are populated at room temperature.

 

Images of our research lines

PUBLICATIONS AND PATENTS

M.N. Lisa, A.R. Palacios, M. Aitha, M. M. González, D.M.Moreno, M.W. Crowder, J. Spencer, D.L. Tierney, L.I. Llarrull and A. J. Vila

“A General Reaction Mechanism for Mono- and Binuclear Metallo-β-lactamases”, Nature Communications (2017).

M.N. Lisa, A.R. Palacios, M. Aitha, M. M. González, D.M.Moreno, M.W. Crowder, J. Spencer, D.L. Tierney, L.I. Llarrull and A. J. Vila

“A General Reaction Mechanism for Mono- and Binuclear Metallo-β-lactamases”, Nature Communications (2017).

P.Hinchliffe, M.M. González, M. F. Mojica, J. M. González, V. Castillo, C. Saiz, M. Kosmopoulou, C. L. Tooke, L. I. Llarrull, G. Mahler , R. A. Bonomo , A.J. Vila*, J. Spencer*

“Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes”, Proc.Natl.Acad.Sci USA, 111, E3745-54 (2016).

P.Hinchliffe, M.M. González, M. F. Mojica, J. M. González, V. Castillo, C. Saiz, M. Kosmopoulou, C. L. Tooke, L. I. Llarrull, G. Mahler , R. A. Bonomo , A.J. Vila*, J. Spencer*

“Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes”, Proc.Natl.Acad.Sci USA, 111, E3745-54 (2016).

L.J. González, G. Bahr, T.G. Nakashige, E.M. Nolan, R.A. Bonomo and A.J.Vila

“Membrane-anchoring stabilizes New Dehli carbapenemase NDM-1 upon zinc starvation and favors protein export into vesicles”, Nature Chemical Biology, 12, 516-22 (2016). -

L.J. González, G. Bahr, T.G. Nakashige, E.M. Nolan, R.A. Bonomo and A.J.Vila

“Membrane-anchoring stabilizes New Dehli carbapenemase NDM-1 upon zinc starvation and favors protein export into vesicles”, Nature Chemical Biology, 12, 516-22 (2016). -

M.N. Morgada, L.A. Abriata, C. Cefaro, K.Gajda, L. Banci and A.J.Vila

“Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase", Proc.Natl.Acad.Sci USA, 112, 11771-6 (2015).

M.N. Morgada, L.A. Abriata, C. Cefaro, K.Gajda, L. Banci and A.J.Vila

“Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase", Proc.Natl.Acad.Sci USA, 112, 11771-6 (2015).

M.N.Morgada, L.A.Abriata, U.Zitare, D.Álvarez-Paggi, D.H.Murgida and A. J.Vila

“Control of the electronic ground state on an electron transfer copper site by second-sphere perturbations", Angew.Chemie, 10, 6188-92 (2014).

M.N.Morgada, L.A.Abriata, U.Zitare, D.Álvarez-Paggi, D.H.Murgida and A. J.Vila

“Control of the electronic ground state on an electron transfer copper site by second-sphere perturbations", Angew.Chemie, 10, 6188-92 (2014).

contacto@conicet.gov.ar

Sede CCT Rosario

Ocampo y Esmeralda, Predio CONICET-Rosario
2000 Rosario, Santa Fe, Argentina
Tel. 54-341-4237070 / 4237500 / 4237200

Sede Facultad de Ciencias Bioquímicas y Farmacéuticas

Universidad Nacional de Rosario - Suipacha 531
2000 Rosario, Santa Fe, Argentina
Tel. +54 341 4350596 / 4350661 / 4351235

📍#Biolíderes2025
Estamos viviendo una jornada intensa en el lab del IBR: experimentos, intercambio y ciencia en primera persona. 🧬👨‍🔬👩‍🔬
Gracias a quienes están explorando, probando y entendiendo la biotecnología desde adentro.
#IBR #CienciaArgentina #Biotecnología #Innovación🚀